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A B S T R A C T

Machine learning plays an important role in accelerating the discovery and design process for novel electro-
chemical energy storage materials. This review aims to provide the state-of-the-art and prospects of machine
learning for the design of rechargeable battery materials. After illustrating the key concepts of machine learning
and basic procedures for applying machine learning in rechargeable battery materials science, we focus on how to
obtain the most important features from the specific physical, chemical and/or other properties of material by
using wrapper feature selection method, embedded feature selection method, and the combination of these two
methods. And then, the applications of machine learning in rechargeable battery materials design and discovery
are reviewed, including the property prediction for liquid electrolytes, solid electrolytes, electrode materials, and
the discovery of novel rechargeable battery materials through component prediction and structure prediction.
More importantly, we discuss the key challenges related to machine learning in rechargeable battery materials
science, including the contradiction between high dimension and small sample, the conflict between the
complexity and accuracy of machine learning models, and the inconsistency between learning results and domain
expert knowledge. In response to these challenges, we propose possible countermeasures and forecast potential
directions of future research. This review is expected to shed light on machine learning in rechargeable battery
materials design and property optimization.
1. Introduction

The development of energy storage and conversion devices is crucial
to reduce the discontinuity and instability of renewable energy genera-
tion [1,2]. According to the global energy storage project repository of
the China Energy Storage Alliance (CNESA) [3], as of the end of 2019,
global operational electrochemical energy storage project capacity
totaled 8239.5 MW (4.5% of the total global energy storage market of
183.1 GW). As a key component of electrochemical energy storage,
rechargeable batteries are extremely vital for a broad range of applica-
tions, including new energy vehicles, consumer electronics, and aero-
space. To meet the growing needs of these applications, the higher
demands are being put forward for rechargeable batteries with higher
energy density, higher power density, longer cycle life, higher safety and
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at an acceptable cost. Thus, it is urgent to develop key rechargeable
battery materials including those for electrodes and electrolytes, to
improve the performance of rechargeable batteries [4].

Traditional trial-and-error methods are too time consuming to keep
pace with the rapid evolution of demand. Compared with trial-and-error
methods, computational simulation is advantageous for providing useful
experiments over which one has full control of the relevant variables.
Since the 1980s, the crossing and integration of materials science,
physics, and computational science, has resulted in the development of
various computational simulation methods to accelerate the research on
rechargeable battery materials [5]. The computational simulation
methods have covered a wide range of spatial and temporal scales. These
include microscale simulations (such as first-principles (FP) calculations,
quantum mechanics (QM), molecular dynamics (MD) and Monte Carlo
of Materials Science and Engineering, Shanghai University, Shanghai, 200444,
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(MC) techniques), mesoscale simulations focused on the phase-field (PF)
method and force-field (FF) approach, and macroscale simulations based
on the finite element (FE) and finite difference (FD) methods. Multiscale
calculation methods and some of the major applications at microscale,
mesoscale, and macroscale in rechargeable batteries are shown in Fig. 1.
In 1998, using the FP calculations, Ceder et al. [6] found that the novel
cathode material Li(Co,Al)O2, could not only increase the lithium battery
voltage, but could also decrease the density and cost of the batteries.
Subsequently, Yang and Tse (2011) [7] investigated the diffusion
mechanisms of Li ions in the cathode material LiFePO4, using MD cal-
culations. By adopting QM calculations, Husch and Korth (2015) [8]
assessed the thermodynamic effects of electrolyte materials. Moreover, to
explore stable solvents for use in the design of novel high-voltage stable
electrolytes, Pande and Viswanathan (2018) [9] applied FP to identify
simple descriptors to determine the influence of solvation on the oxida-
tive stability of various electrolyte components. In the same year, Fujie
et al. [10] proposed a new energy estimation method for the MC pro-
cedure using the QM method. They applied this method to research the
formation of solid electrolyte interphase film in lithium-ion batteries. In
2012, the FF approach was applied to study the mechanism of the con-
version reaction by which lithiummetal formed the nanomaterial FeF2 in
lithium ion batteries (Ma and Garofalini) [11]. Furthermore, in 2018,
Cogswell and Bazant [12] simulated phase separation in realistic nano-
particle geometries for LixFePO4 using a PF model. In addition, the
temperature distribution and force distribution of lithium-ion batteries
were predicted by using the FE method in 2010 [13] and 2012 [14],
respectively. As seen above, the computational simulation methods have
been successfully applied to the study of rechargeable battery materials
at microscale, mesoscale, and macroscale.

Given the sophisticated requirements involved in understanding the
basic physicochemical properties of rechargeable battery materials, the
effectiveness experimental measurement and computational simulation
in exploring unconstrained chemical spaces and/or complex real-world
rechargeable battery materials remains limited. The resource consump-
tion of a single experiment or calculation is usually large, and the number
of experiments or calculations will increase by continuous trial and error
only based on limited knowledge or experience will increase, resulting in
the waste of a large number of resources. To accelerate the research and
application process for new materials, the “Materials Genome Initiative”
(MGI) was proposed in the United States in June 2011 [15]. The critical
idea behind the MGI is the combination of “experiment”, “calculation”,
Fig. 1. Applications of multi-scale computation methods at microsca
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and “data” [16], which means a new model of performing theoretical
simulation and property prediction priority with experimental verifica-
tion behind. In the past, extensive experimental materials databases were
accumulated to provide rechargeable battery materials engineers with
ready access to the properties of known materials. These were gathered
into such as the inorganic crystal structure database (ICSD) [17], Cam-
bridge Structure Database (CSD) [18] and Pauling file database [19].
Among the most fundamental properties of known rechargeable battery
materials, is the crystal structure information. This includes atomic po-
sitions, space groups, lattice constants, and symmetry, and these are
available in the above databases. In addition, MGI has given birth to
many high-throughput material computing platforms and databases,
such as the Materials Project (MP) [20], AFLOWLIB [21], the Open
Quantum Materials Database (OQMD) [22], the Harvard Clean Energy
Project (HCEP) [23], the Electronic Structure Project (ESP) [24], the
Computational Materials Repository (CMR) [25], Novel Materials Dis-
covery (NOMAD) [26], and NIST [27]. These databases provide MGI
engineers with access to high quality data. As shown in Table 1, a huge
collection of thermodynamic properties such as data on energy properties
and structural properties have been accumulated by computational
simulation and experimental measurement. These materials databases
offer an opportunity for the emergence of the fourth paradigm of
rechargeable battery materials science: data-driven materials discovery.
The “data-driven materials discovery”model represents the core concept
and development direction of MGI.

The high-throughput computational materials design is based on the
combination of computational quantum-mechanical-thermodynamic
approaches and a multitude of techniques rooted in database construc-
tion and intelligent data mining [28]. As shown in Fig. 2, since the launch
of MGI in 2011, more than 2518 articles related to MGI have emerged,
including 1788 articles related to high-throughput computing, and 730
articles about machine learning (ML) for materials discovery and prop-
erty prediction. ML is being used as a powerful tool for finding patterns in
high-dimensional data. It helps to reduce the amount of calculation
needed and speeds up exploration of novel materials. The
high-throughput databases provide opportunities for ML to exploit
high-quality data for materials discovery. In the last decade, the literature
number on materials design based on high-throughput computing and
ML has been on the rise. In recent years, in particular, the number of
academic papers has grown exponentially on “materials design by ML”.

In recent years, some successful examples of ML in various materials
le, mesoscale, and macroscale, in rechargeable battery materials.



Table 1
List of some notable material databases.

Database URL Category Storage content Data Sources

ICSD [17] cds.dl.ac
.uk/cds/data
sets/crys/ic
sd/llicsd
.html

Inorganic
crystal

Structure
properties

Experiment

CSD [18] www.ccdc
.cam.ac.uk/
pages/
Home.aspx

Organic
crystal

Structural
properties

Experiment

Pauling file
[19]

paulin
gfile.com

Inorganic
material

Constitution,
structure, powder
diffraction data,
and physical
properties

Experiment

MP [20] www.mater
ialsproject.or
g

All Structure and
energy properties

ICSD,
computation

AFLOWLIB
[21]

aflowlib.org Alloy Electronic
structure,
electromagnetic
properties, etc.

Computation

OQMD [22] oqmd.org All Structural,
thermodynamic
properties, etc.

ICSD,
computation

HCEP [23] cepdb.molec
ularspace.org

Organic
solar cell
material

Electronic
structure,
molecular
information

Computation

ESP [24] http://gur
ka.fysik.uu
.se/ESP/

Inorganic
compound

Electronic
structure
properties

Computation

CMR [25] https:
//cmr.fysi
k.dtu.dk/

All Physical, chemical
properties, etc.

Computation

NOMAD
[26]

https://noma
d-coe.eu/

All Structural,
electronic
properties, etc.

Computation

NIST [27] http
://webbook
.nist.gov

All Chemical, physical
properties, etc.

Computation
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fields have emerged, including composite materials [29–31], alloy ma-
terials [32–34], catalyst materials [35], and battery materials [36–43].
Themost representative work aboutML in rechargeable batterymaterials
development follows. In 2014, Jalem et al. [38] combined an artificial
Fig. 2. Literature counts from 2011 to 2019. The information is obtained by searchin
“machine learning” þ “materials” as key words, respectively.

436
neural network (ANN) and partial least squares (PLS) algorithm with
density functional theory (DFT) to predict the diffusion barrier and
cohesive energy of an olivine-type LiMXO4. Using this approach, 15
promising lithium ion battery solid electrolyte materials were screened
out (i.e., selected). Afterwards, they developed a Bayesian-driven
approach to screen for fast-conducting Li-and Na-containing tavorite
type compounds efficiently [39], which involved a search space of 318
AMXO4Z tavorites (A, M, X, and Z are sites for ionic substitution). The
scheme only requires ~30% of the total DFT-based evaluations to recover
the optimal compound ~90% of the time. In 2017, Sendek et al. [40]
established a model by training on 40 samples using logistic regression
(LR) to predict ionic conductivity. Twenty-one solid electrolyte materials
with ionic conductivity greater than or equal to 10�4 S/cmwere screened
out (extracted) from the MP database. Furtherly, they performed
DFT-MD calculations on the promising candidate materials, finding evi-
dence of superionic Li conduction in eight and marginal Li conduction in
two [41]. In 2018, Ahmad et al. [42] performed a computational
screening of over 12,000 inorganic solids based on their ability to sup-
press dendrite initiation in contact with a Li metal anode. Using ML
models, twenty interfaces with six solid electrolytes were predicted to be
resistant to dendrite initiation. In 2019, Arghya et al. [43] proposed an
approach to reversely design high-performance solid electrolyte inter-
phase (SEI) using semi-supervised generative deep learning models,
throughput synthesis, and laboratory testing together. With further
development of MGI, ML will obtain the composition-structure-property
relationships of rechargeable battery materials in a faster and more ac-
curate manner and become an effective computational method for
rechargeable battery materials.

Currently, several excellent review articles on materials informatics
are available in the literatures [44–55]. Thereinto, references [52–55]
demonstrate the research status of ML in key energy materials including
catalysis, batteries, solar cells, and crystal discovery. However, the details
about inner workings of ML algorithms in property prediction and
application process for rechargeable battery materials have been rarely
covered. With this review, we try to present a comprehensive overview of
ML in rechargeable battery materials in the view of ML methods. We not
only deeply analyze the successful experiences and the common existing
problems, but also establish a new horizon for the discovery and design of
rechargeable battery materials in the framework of ML. The remainder of
this paper is structured as follows: Section 2 briefly introduces the
paradigm of ML in rechargeable battery materials science. Then, Section
3 describes feature engineering in the step of sample construction, and
g on the “Web of Science” database using “high throughput” þ “materials” and
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related feature selection methods. Section 4 demonstrates the research
status with respect to the applications of ML in rechargeable battery
materials. Section 5 discusses the limitations and challenges compli-
cating the use of ML in the field of rechargeable battery materials science.
Then, corresponding countermeasures for improvement are proposed.
Finally, the conclusions are presented in Section 6.

2. Machine learning paradigm for use in rechargeable battery
materials science

2.1. Machine learning and several related concepts

As a scientific endeavor, ML originated from the exploration of arti-
ficial intelligence [56]. In the 1950s, various symbolic methods are tried
to solve the problem of acquiring knowledge by machine [57]. And later,
some methods based on the connection principle such as neural network
and perceptron have been widely studied [58]. Subsequently, support
vector machines (SVM) and decision tree (DT) based on statistical
learning theory (SLT) were proposed [59]. At present, some new ML
methods, such as deep learning for big data analysis, are getting more
attention in academia and industry.

ML is a discipline in which research is done to determine how to make
computers learn automatically, acquire knowledge, and continuously
improve their own performance without explicit programming [60].
Since the first ML seminar was held at Carnegie Mellon University of the
United States in the summer of 1980, ML has become an independent
discipline and has begun to take shape rapidly. As shown in Fig. 3, ML is
also a cross discipline which has the close relationships with the current
hot topics in computer science. ML is a branch of artificial intelligence
and an important way for computer to acquire the knowledge. The
development of ML originates from the neurocomputing. ML provides
the methods for data mining and pattern recognition. Note that currently
the most ML algorithms are based on the SLT.

ML exhibits good applicability in classification, regression and other
issues related to the high-dimensional data. Aimed at extracting knowl-
edge and finding insights hidden in data, ML learns from previous ex-
periences to produce reliable, repeatable results. Thus, ML plays an
important role in many fields, especially in speech recognition, image
recognition, bioinformatics, information security, natural language pro-
cessing (NLP), and materials science. The pioneering application of ML in
rechargeable battery materials can be traced back to the 1990s, when the
fuzzy logic methodology was employed to predict the state-of-charge and
state-of-health of rechargeable battery systems [62]. Subsequently, ML
Fig. 3. The relationships among ML and curr
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was used to approach various kinds of topics in rechargeable battery
materials science, such as new materials discovery and materials prop-
erties prediction.

2.2. Machine learning paradigm for use in rechargeable battery materials
science

A classical definition of ML is as follows: < P;T;E >, where P , T , and
E denote performance, task, and experience, respectively. The main
interpretation is that a computer program learns from experience E with
respect to task T and a performance measure P if its performance on task
T, as measured by P, improves with experience E [63].

In rechargeable battery materials science, the task T mainly focuses
on property prediction and discovery of new materials. In order to satisfy
such tasks, the commonly used ML models involve regression and clas-
sification, such as linear models (PLS and LR), nonlinear models (SVM,
ANN, and random forest: RF), and a small number of clustering models.
The performance P is generally represented as the accuracy of these
models. The experience E corresponds to the dataset of relevant materials
in a specific task, which usually consists of a set of condition attributes
that represent the characteristics of materials, and a decision attribute
that reflects a certain property of materials. For example, to predict the
ionic conductivity of solid-state lithium ion electrolytes, Beal et al. [64]
established a radial basis function neural network (RBFNN) based on the
data collected in the experiment as experience E. The model performance
P was quantified by the average correlation coefficient (R2) of 0.92.

The process of ML applied to rechargeable battery materials is shown
in Fig. 4. First, some data can be collected directly from existing material
databases, or the results of experimental measurements and simulation
calculations can be used. Some data is usually obtained through further
calculation, generally as the condition attributes of the ML models. Then,
after the process of data cleaning and feature engineering (including
feature extraction and selection), the original data can be converted to
samples to train the ML model. Third, the mapping relationship between
the conditional attributes and the decision attribute can be simulated by
selecting the appropriate ML algorithm and tuning the optimal hyper-
parameter. Finally, experts and researchers can exploit these models to
predict the properties of materials or to guide the discovery of new
materials.

3. Feature engineering in rechargeable battery materials science

A huge amount of data has been accumulated by computational
ent hot topics in computer science [61].



Fig. 4. Workflow of the application of ML in rechargeable battery materials, which includes four major steps: data collection, feature engineering, model building, and
model application.
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simulations and experimental measurements in the field of rechargeable
battery materials. These data are typically incomplete, noisy, and
inconsistent, and thus, data cleaning should be performed after collecting
the original data. Specifically, the target property of rechargeable battery
materials is usually described by many descriptors, including some basic
descriptors such as atomic electronegativity, atomic radius and unit cell
dimension which describe the elements or structural properties of com-
pounds, and some derived descriptors defined by relevant formulas or
empirical rules based on the above descriptors or the crystal structure
itself, such as bottleneck size, ion radius radio, polyhedron volume
composed of multiple atoms in unit cell.

When the basic descriptors are regarded as input factors, only the ML
model can effectively preserve the specific physical, chemical and/or
other properties of material, but the trained model is often unexplainable
because of the extremely complex relationship between descriptors and
the target property. The successful of the crystal graph convolutional
neural network (CGCNN) lies in its ability to appropriately represent the
crystal structure which preserves the structure topology by a series of
basic descriptors, and the certain interpretability of the model [42,65,
66]. Derived descriptors usually serve as input factors combined with
basic descriptors, which can simplify the representation and improve the
interpretability of the ML model, such as reference [40]. However, the
selection of these descriptors often depends on the physical intuition of
experts. For example, in the prediction of the capacity of lithium ion
batteries, LASSO, KRR, RF, and SVR were used by Kauwe et al. [67], but
the prediction results were not ideal because of the lack of appropriate
descriptors. Anyway, it is still possible that some of descriptors are not
really relevant to the target property nor do they contribute to the con-
struction of the ML models. Therefore, feature engineering, which is
being conducted to identify the appropriate features related to property
prediction, is an important step in ML model building [68]. Feature se-
lection (FS) [69], identification and ranking of the most relevant features,
greatly affects the computational speed and predictive ability of the
model. It is an important part of feature engineering. Several FS methods
have been presented, which can generally be grouped into three cate-
gories that include filter, wrapper, and embedded methods [70]. Among
them, the wrapper and embedded methods are mostly used in the field of
rechargeable battery materials.
438
3.1. Wrapper feature selection applied in property prediction of
rechargeable battery materials

Wrapper FS methods are the most widely used among all the FS
methods in the property prediction of rechargeable battery materials.
Wrapper FS methods are generally used in combination with a specific
ML model and a meta-heuristic algorithm to identify the best subset of
features without sacrificing prediction accuracy [71]. First, the wrapper
generates several initial candidate feature subsets based on a predefined
search strategy (e.g., exhaustive search: ES, genetic algorithm, random
search, and sequential search: SS). Then, a specific ML model, such as
SVM or ANN, is trained to evaluate each candidate feature subset. Some
candidate feature subsets are retained and used to generate the next set of
feature subsets. This process is performed iteratively until the selected
feature subset meets the iteration stop condition, such as maximum stop
times and prediction accuracy thresholds.

In order to find the appropriate features related to the property pre-
diction, many researchers have introduced the wrapper methods into the
property prediction (Table 2). For instance, Sendek et al. took special
care to avoid overfitting the data including 38 samples with 19 features
in predicting lithium ionic conductivity. They employed wrapper
methods with an ES strategy and selected 7 features from 19 structured
descriptors that depends on simple crystallographic and chemical re-
lationships [72]. Then they trained a model with a mean-squared leav-
e-one-out cross-validation (LOOCV) error of 0:41σ ðσ ¼ 2:49Þ.
Furthermore, in 2017 [40], Sendek et al. added two samples with one
more feature to their previous work [72], and performed ES and LR to
select the best subset from 20 features based on 40 samples. They
selected five features such as average number of lithium neighbors for
each lithium, the average sublattice bond ionicity, the average
anion-anion coordination number in the anion framework, the average
shortest lithium-anion distance in angstroms, and the average shortest
lithium-lithium distance. According to themodel coefficient, it was found
that compared to the lithium-lithium bond number, the equilibrium
lithium-anion distance has more influence on ionic conductivity. The
best model got a cross-validated misclassification rate (CVMR) of 0.1.
Additionally, in order to find the optimal subset of molecular descriptors
of the electrical conductivity including temperature, anion-based



Table 2
Prediction results when using the wrapper method for feature selection.

Literature Materials Property ML method Original Features Selected Features Evaluation Index and Result

[40] solid state electrolytes lithium ionic conductivity LR 20 5 CVMR: 0.1
[72] solid state electrolytes lithium ionic conductivity LWLS 19 7 LOOCV error: 0.41σ
[73] ionic liquids electrical conductivities LSSVM unspecified 10 AARD: less than 1.9%
[74] face-centered cubic (FCC) host systems diffusion energy barriers GKRR 111 23 RMSE: 0.15 eV
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molecular descriptors, and cation-based molecular descriptors, Ghar-
agheizi et al. [73] applied an SS strategy to successfully screen out 10 key
descriptors and built a least square SVM (LSSVM) model with average
absolute relative deviation (AARD) of less than 1.9%. Wu et al. [74] also
leveraged this method to select 23 key descriptors from 111 features
(more than 200 samples) containing elemental properties for the host
and impurity atoms, as well as difference or ratio of properties between
host and impurity atoms. A Gaussian kernel ridge regression (GKRR)
model was developed to predict FCC solute diffusion barriers with root
mean square error (RMSE) of 0.15 eV.

As seen from the above research studies, many data are not only of
high dimensionality, but also of small sample size, which easily leads to
overfitting of the MLmodel and reduces the generalization ability. This is
another important reason why FS is required in rechargeable battery
materials science, and this phenomenon is discussed in detail in Section
5.1. In addition, wrapper FS methods allow different search strategies
and numerous ML models to be combined at will. This increases the
difficulty of material experts without professional-level computer
knowledge employing the method. Therefore, it is worthwhile to deeply
study the automatic selection and design of the wrapper FS algorithm on
the way of future research.
3.2. Embedded feature selection applied for performance prediction of
rechargeable battery materials

Compared with wrapper FS methods, embedded FS methods perform
FS during the process of model construction (of such as PLS, least abso-
lute shrinkage selection operator: LASSO, RF, and Elastic net) [75,76]. In
this case, the step of model construction and the FS part are synchro-
nized, and the criterion for evaluating features is derived from the basic
function of a particular class of regression or classification. This greatly
simplifies the process of FS. Not only can embedded FS methods remove
redundant and inappropriate features, but some can also rank features in
order of importance. This makes sense for use in rechargeable battery
materials science because experts can use it to make more targeted sci-
entific research and materials design. Therefore, embedded FS methods
are also employed frequently in rechargeable battery materials science.

In order to identify the major factors affecting the cathode volume of
a Li-ion battery, Xiao et al. [77] employed PLS based on data of 28
cathodes to measure the importance of five types of descriptors including
crystal structure, element, composition, local distortion and electronic
level, with 34 factors in total. According to the variable importance in
projection analysis, they found that the radius of the X4þ ion and the X
octahedron descriptors strongly affect the volume changes. By using
extremely randomized trees (ERT), Shandiz and Gauvin [78] predicted
the crystal structure of Li-ion silicate cathode materials, and found that
the volume of crystal was the most important feature. Experts can further
design low-strain cathode materials by focusing on adjusting the values
of these descriptors. In 2018, Li et al. [79] proposed a RF regression
model for battery capacity estimation, which not only captured the de-
pendency of the battery capacity and associative features, but also suc-
cessfully evaluated the health status of different batteries under varied
cycling conditions, and did so with RMSE of less than 1.3%.

Overall, embedded FS methods can determine the importance of each
feature from the basics of a particular learner; thus, the FS results can be
explained from the perspective of an algorithm. However, the embedded
methods are represented by several ML models (e.g., RF, LASSO, and
439
Elastic net), which makes its application in the field of rechargeable
battery materials very limited. Moreover, the hyperparameters of the
algorithm also need to be manually searched and optimized to achieve
better performance.

3.3. Combination feature selection applied in performance prediction of
rechargeable battery materials

The combination of multiple FS methods has become a hot topic in
ML, because this approach allows processing of features from different
perspectives such as relevance, sparsity, and redundancy. For example, in
the novel hybrid FS method [80] in materials science, a candidate feature
subset is first filtered out of the original feature set by performing a
highly efficient filter procedure. Then, the feature subset is further tuned
by performing a more accurate wrapper procedure.

In rechargeable battery materials science, we first developed a data-
driven multi-layer FS method combined with domain expert knowl-
edge (named DML-FSdek) [81]. This method combines filter andwrapper
methods to eliminate sparse, irrelevant, and redundant features
sequentially and automatically. The domain expert knowledge is inte-
grated into the process of FS to eliminate the risk of crucial features being
removed. We performed experiments to compare this method and two
existing sparsity ones (LASSO, Elastic net) on four battery materials
datasets [82–85]. As shown in Table 3, our method has lower RMSE than
LASSO and Elastic net do, which shows better prediction performance.
The number of features selected by our method is greater than that by the
sparsity methods. This is because the introduction of expert knowledge
allows important features to be retained. In general, the method can
improve the prediction performance on the premise that the selected
features are consistent with the domain expert knowledge.

4. Applications of machine learning in rechargeable battery
materials science

ML is widely used in rechargeable battery materials science and its
superiority has been proven in both time efficiency and prediction ac-
curacy. The applications of ML in rechargeable battery materials mainly
include property prediction and materials discovery. The essence of both
is to establish the quantitative structure activity relationship (QSAR)
between conditional attributes (descriptors) and decision attributes (the
properties of interest) by using ML algorithms. The prediction of prop-
erties considers a wide range of material properties as decision attributes,
such as migration energy, ionic conductivity, electrical conductivity,
thermal conductivity, cathode volume and lattice constant, and typically
applies regression analysis methods. In research on materials discovery,
the QSAR between components or structural descriptors and stability-
related properties such as formation energy, and classification and clus-
tering algorithms are also applied.

4.1. Property prediction for rechargeable battery materials

As shown in Fig. 5, a large number of ML methods have been suc-
cessfully applied to the property prediction of rechargeable battery ma-
terials. These include such as linear model LR and OLS, nonlinear model
support vector regression (SVR), ANN, convolutional neural network
(CNN), and deep neural networks (DNN). Details of ML applications that
are successful in predicting the properties of rechargeable battery



Table 3
Comparison between LASSO and Elastic Net methods and ours on four battery materials datasets.

Feature selection models

LASSO Elastic net Our method

Dataset Initial Selected RMSE Selected RMSE Selected RMSE

[82] 6 4 0.1546 3 0.1657 5 0.1428
[83] 5 2 0.1437 2 0.1437 3 0.1136
[84] 6 1 0.2166 1 0.2166 6 0.1301
[85] 6 2 0.1448 3 0.1373 5 0.1301

Fig. 5. Taxonomy of the literature for ML in rechargeable battery materials. Related methods and literatures for each performance prediction are marked.
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materials will be discussed in the next three subsections, which include
liquid electrolyte materials, solid electrolyte materials, and electrode
materials.

4.1.1. Property prediction for liquid electrolytes
For liquid electrolytes, the thermal conductivity, electrical conduc-

tivity, viscosity, density, and the coordination energy of the ions to the
solvent are always concerned. However, it is always difficult and
expensive to estimate these properties by experiments and computation.
Therefore, prediction of these properties byMLmethods has attracted the
attention of many researchers. In general, the thermal conductivity of a
specific electrolyte solution is a function of temperature, concentration,
and pressure. The traditional methods are usually suggested for a specific
electrolyte solution and a limited range of temperatures and concentra-
tions. Moreover, it is relatively difficult to characterize the thermal
conductivity in the traditional way due to the long-range electrostatic
effect. In order to overcome the aforementioned shortcomings, Eslam-
loueyan et al. [86] considered temperature, concentration, molecular
weight, and the sum of electrons of the cation and anion as inputs, and
trained a feed-forward multilayer perceptron neural network
(FFMLPNN) model with only one hidden layer on 389 experimental data
points to predict the thermal conductivity of an electrolyte solution at
atmospheric pressure with mean square error (MSE) of 1.012 � 10�5.
Similarly, Hezave et al. [87] trained a same FFMLPNN model based on
209 data points from 21 different ionic liquids (ILs) to predict the thermal
conductivity of ILs with mean square error (MSE) of 1.2 � 10�6. The
descriptors of their FFMLPNN model not only included temperature,
molecular weight, but also added melting point and pressure as addi-
tional inputs. The above excellent works indicate that temperature,
molecular weight, and pressure are significant descriptors for different
types of electrolyte solution and the FFMLPNN is an appropriate model
for prediction of the thermal conductivity.

As an important indicator to evaluate the performance of the ILs,
electrical conductivity has attracted much attention. Generally, the
electrical conductivity of ILs has a nonlinear behavior in terms of tem-
perature. Therefore, it is difficult to develop a simple model to accurately
predict the electrical conductivity in a wide range of temperature. In the
prediction of electrical conductivity by ML methods, the nonlinear model
such as LSSVM and FFMLPNNmodel often perform great superiority. For
example, Gharagheizi et al. [73] first computed a series of molecular
descriptors for 54 ILs collected form literatures from their chemical
structure of anions and cations. Then, SS strategy (as described in section
3.1) and the LSSVM model are used for selecting the optimal subset of
features containing molecular descriptors and temperature, and devel-
oping a nonlinear model by training on 783 samples. The LSSVM model
ultimately obtained a low AARD of less than 1.9% by testing on 97
experimental data. In order to predict the electrical conductivity of
ternary mixture ILs, Hezave et al. developed a FFMLPNNmodel [88] with
only one hidden layer training on 78 data points. The melting point, the
compositions, the molecular weight, and the temperature of the ternary
system have been utilized as inputs. The model was then validated using
26 data points (test data) which indicated the good interpolative ability
of the trained network with AARD of 1.44. Furtherly, mole percent of
each component were selected as descriptors by Hosseinzadeh et al. [89]
in addition to temperature, melting point, molecular weight of the
compounds when a LSSVM model was employed to predict the electrical
conductivity of ternary mixture ILs at various temperatures and atmo-
spheric pressure. The LSSVM model was built on 179 samples and ach-
ieved R2 of 0.999. By relevancy analysis, it can be concluded that the
average melting point has the greatest impact on the ternary mixture
electrical conductivities.

Viscosity is a representation of the internal friction of fluid flow, its
measurement is meaningful for any chemical process of ILs. The de-
scriptors for different types of ILs are different for prediction of viscosity
using ML method, but most of them contain molecular properties such as
molecular mass and molecular weight. And the most used ML method is
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FFMLPNN. For instance, Lashkarblooki et al. [90] trained a FFMLPNN
model with one hidden layer based on 547 data points to predict the
viscosity of ternary mixture ILs (R2:0.9998), the molecular mass, boiling
point of three components and compositions of non-ILs components were
selected as descriptors. Fatehi et al. applied the same method to predict
the viscosity of binary mixture ILs in 2014 [91] and the pure ILs in 2017
[92], respectively. The superior prediction was obtained by using the
same descriptors including molecular weight and structure characteris-
tics of the ILs (the number of rings, the mass of each ring group and the
mass of the central atom of the cation), as well as the system conditions
such as temperature and pressure. An advantage of this method is that the
proposed network for the prediction of viscosity of ILs was able to predict
the ternary viscosity with some easily obtained inputs.

Apart from the properties mentioned above, the density of ILs is one
of the most significant physical properties required in rational design of
ILs used as promising liquid electrolytes. By training the LSSVMmodel on
405 data points, Hemmati-Sarapardeh et al. [93] predicted the density of
binary mixture ILs at different pressures by regarding pressure, temper-
ature, and mole fraction as inputs (R2: 0.9866). Moreover, in order to
understand the tendencies in the ion transfer at the electrolyte/electrode
interface, Ishikawa et al. [94] predicted the coordination energy of the
ions to the solvent using multiple linear regression (MLR), LASSO, and ES
with linear regression (ES-LR). In addition to basic element descriptors
such as ionic radius, electronegativity and atomic charge, some compu-
tational descriptors calculated by DFT are exploited including energies of
the highest occupied molecular orbital (HOMO), the lowest unoccupied
molecular orbital (LUMO), dipole moment, natural bond orbital (NBO)
charge of the O atom that coordinates to the metal ion, total energy and
total dipole moment. By ES with Gaussian process, the radius of the metal
ion, and the NBO charge of the O atom are considered to be the two most
important parameters that affect the coordination energy, and good
prediction accuracy for coordination energy of 0.016 eV was obtained.

In conclusion, temperature, molecular concentration and composition
are commonly concerned descriptors in the prediction of different
properties of liquid electrolytes. Because there is often a complex
nonlinear relationship between the descriptors and the properties, SVM
and ANN have been widely used and have achieved good results. How-
ever, limited by the small data, the ANN model used in above works only
contains a hidden layer to simulate the non-linear relationships. With the
increase of sample size, ANN is expected to show better prediction per-
formance. Moreover, some methods corresponding to the small data will
be discussed in section 5.1.

4.1.2. Property prediction for solid electrolytes
Solid electrolytes have attracted much attention in recent years.

Compared with traditional batteries with liquid electrolytes, lithium
batteries with solid electrolytes have better safety, higher energy density,
and longer life [40]. Ionic conductivity, diffusion barrier, energy
migration, shear moduli, and elastic constants are important indicators of
whether a material can be used as a promising solid electrolyte. Many
linear methods such as OLS, LR, PLS and nonlinear methods such as ANN
and SVR are used to predict these properties of candidate compounds.

Many promising solid electrolytes have been reported, such as
tavorite-type materials, olivine-type materials, LISICON-type materials,
and perovskite-type materials. Their ionic transport properties have been
widely predicted including diffusion barrier, migration energy and ionic
conductivity. Generally, the microstructure and compositions of mate-
rials were always considered as important descriptors of ionic transport
properties. In prediction of diffusion barrier and cohesive energy of an
olivine-type LiMXO4, Jalem et al. [38] developed a single hidden layer
feed-forward network with two external attributes, which can increase
the constraint for the model in contrast to the single response variable
models. This model was built by training on 72 samples, which is char-
acterized by some component descriptors such as the radius and elec-
tronegativity and structure descriptors such as lattice parameter and
intra-atomic parameter. By comparing the results with PLS, the
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feed-forward network model shown better prediction result for predict-
ing diffusion barrier. Furtherly, this feed-forward network model by
Jalem et al. [38] was also successfully applied to the prediction of
migration energy of tavorite-type LiMTO4F materials with the same de-
scriptors [95]. Two works proved that there are some common de-
scriptors derived by composition and structure nomatter what the type of
the material is. We can use them in different type of materials. Different
from the above works, in which descriptors are gained mainly by theo-
retical calculating, some researchers introduce more experimental de-
scriptors in the following narrative. For example, in order to find the
optimal composition space of Li3xLa2/3-xTiO3, Beal et al. [64] used a high
throughput physical vapor deposition system to synthesize 35 sample
libraries and study the perovskite-type compounds. Limited by the small
data, they utilized a RBFNN model which is more appropriate with
smaller data sets than other network types over a wide range of param-
eter space (composition, thickness, deposition temperature, annealing
temperature) to predict the total conductivity (buck conductivity and
grain boundary conductivity). Additionally, by applying partition anal-
ysis, the composition, specifically the lithium content, and the annealing
temperatures are revealed the important factors when producing a
crystalline Li3xLa2/3-xTiO3 film. Moreover, Ibrahim and Johan [83]
investigated the effects of chemical composition and temperature on the
ionic conductivity of the polymer electrolyte system. Novel composite
solid polymer electrolytes were synthesized successfully by
solution-casting technique. They employed a Bayesian neural network
(BNN) to predict the ionic conductivity of the polymer electrolyte system
and revealed that the ionic conductivity of the polymer electrolyte sys-
tem varies with different chemical compositions and temperatures. This
was consistent with expert experience. Fujimura et al. [85] applied SVR
to use theoretical data (diffusion coefficients at 1600 K, transition tem-
peratures, average volume of disordered structures) and experimental
data (conductivity measurements at different temperatures) in combi-
nation to predict low-temperature conductivities of the various compo-
sitions for LISICON-type. This method illustrates the potential for rational
design of superior-ion conductors based on optimization of materials
compositions through ML techniques. In the studies above, structure and
composition descriptors are introduced in the work. It is interesting that
Jalem et al. [38] introduced thermodynamic concept from literatures. It
is natural to use process parameters as the descriptors when the work
involved experimentation.

Actually, many works took multiple types of materials into consid-
eration. For example, Sendek et al. established a ML model to predict the
ionic conductivity of solid electrolytes which contains LISICON-type,
NASICON-type, garnet-type and other types of compounds [40,72]. In
Refs. [72], 19 structured descriptors based on simple crystallographic
and chemical relationships were computed, and the linear relationship
between the lithium ionic conductivity of electrolytes and these de-
scriptors was found by using OLS and LWLS techniques. Furtherly, in
order to obtain a more accurate prediction model, Sendek et al. added
two additional samples into the train set, and computed one more feature
[40]. Comparing with other linear models, LR is more suitable for small
sample, LR model is established to predict ionic conductivity of solid
electrolytes by training on 40 samples and achieved a CVMR of 10% [40].
Moreover, based on this model, they screened out 20 possible fast ionic
conductor materials. In Ref. [96], PLS and gradient boosting regression
(GBR) were used by Nakayama et al. to predict the migration energy of
Li- and Zn-containing oxide (Li–Zn-X-O) compounds. The GBR technique
provided better prediction than the PLS regression by regarding the
electronegativity and interatomic distances as descriptors. In addition, in
order to screen solid electrolyte materials that can suppress dendrite
initiation in contact with a Li metal anode, Ahmad et al. [42] proposed a
CGCNN model to predict the shear and bulk moduli of the crystalline
solid electrolyte materials with RMSE of 0.1268 and 0.1013 (log (GPa)).
Meanwhile, they also used AdaBoost, LASSO, and Bayesian ridge to
predict the elastic constants of the cubic crystal compounds, yielding a
total R2 of 0.98, 0.85, and 0.69, respectively. As a result, over 20
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mechanically anisotropic interfaces between Li metal and four solid
electrolytes which can be used to suppress dendrite growth were
screened out. The CGCNN is the multigraph representation of the crystal
structure which encodes the atomic information and bonding in-
teractions between atoms, and is expected to demonstrate good univer-
sality in the property prediction of mixed types of solid electrolyte
materials, as it can directly understand materials properties from the
connection of atoms in a crystal.

In summary, although there are differences among various different
algorithms, most ML methods have been able to achieve excellent pre-
diction performance in terms of acceptable temporal and spatial
complexity. It is obvious that in the property prediction of solid elec-
trolyte materials, a good prediction for Li-ion conductivity was achieved
by using composition-derived descriptors such as ion radius, electro-
negativity, structure-derived descriptors such as bond lengths, bond an-
gles whether for the specific type of materials or mixed types of materials.
However, descriptors need to be analyzed in more detail for the specific
problem.

4.1.3. Property prediction of electrode materials
Looking for suitable electrode materials with long-term stability is an

important requirement for developing long-life lithium rechargeable
batteries. The properties of electrodematerials such as volume changes in
lithium ion batteries, voltage, redox potential, capacity, layer thickness
and so on are of wide concern in the property prediction of electrodes.
Since the crystal system has a major effect on the physical and chemical
properties of rechargeable battery electrodes, it is necessary to predict it
in order to estimate other properties. By selecting space group, formation
energy, energy above hull, band gap, number of sites, density, and vol-
ume of unit cell as descriptors, Shandiz et al. [78] applied five classifi-
cation algorithms including ANN, SVM, K-nearest neighbors (KNN), RF,
and ERT to predict the crystal systems of silicate-based cathodes with
Li–Si-(Mn, Fe, Co)–O compositions, which include monoclinic, ortho-
rhombic, and triclinic. Results show that ensemble methods including RF
and ERT provided the highest accuracy of prediction among other clas-
sification methods, and the volume of crystal and number of sites
contributed the most to determine the type of crystal system.

For the cathode of a rechargeable battery, the main properties of
concern relate to volume changes, voltage and redox potentials. One
efficient way to extend the cycle life is to design cathodes with small
volume changes [97]. For this reason, Xiao et al. [77] developed the
QSAR formulations of cathode volume changes of spinel structure LiX2O4
and layered-structure LiXO2 by PLS model. As described in section 3.2,
they found that the radius of X4þ ion, and the X octahedron descriptors
make major contributions to the volume changes of cathode. The
conclusion is expectedly applied to the virtual screening and combina-
torial design of low-strain cathode materials for lithium ion batteries.
High voltage cathode materials are also required for designing high en-
ergy density rechargeable batteries, and some researchers show that
electronegativity of atoms in intercalation compounds has significant
effect on the voltage. Thus, Sarkar et al. [98] predicted the voltage of
different classes of lithium ion battery cathode materials by using
Multi-Layer Perceptron (MLP) by selecting the electronegativity of cen-
tral atom and the stronger electronegative elements as inputs. Due to the
small data (31 samples), the MLP model is fixed with only one hidden.
The prediction result was in good agreement with the known experi-
mental results and DFT based simulation results. The main challenge in
voltage prediction is lack of large data set, access to which is known to
improve the accuracy of the ANN model. Furtherly, Joshi et al. [99]
developed a tool based on ML models to predict voltages of electrode
materials utilizing the features derived from the chemical properties of
compounds and the properties of their elemental constituents including
electronegativity. In this work, the training data were extracted from the
MP database containing a total of 4250 data samples for 3580
intercalation-based electrode materials. Three ML algorithms including
DNN, SVR, and kernel RR were applied, among which DNN performed



Table 4
Application of ML in the discovery of new rechargeable battery materials.

Application description Reference ML
method

Achievement

Finding nature’s missing
ternary oxide
compounds

[106] Bayesian Finding 209 new
compounds

Obtaining qualitatively
useful guidance for a
wide range of perovskite
oxide stability

[107] ERT Predicting 15 new
perovskite compounds
accurately

Discovering elpasolites
(with stoichiometry
ABC2D6) crystals

[108] KRR 90 unique structures
were identified

Predicting the
thermodynamic stability
of solids

[109] RR, RF,
ERT and
ANN

Speeding up considerably
(by at least a factor of 5)
high-throughput DFT
calculations

Screening new materials in
an unconstrained
composition space

[110] Bayesian Screening out 4500 new
stable materials

Predicting the formation
energies by Voronoi
tessellations

[111] RF Obtaining MAE of 80
meV/atom

Developing a tool for
crystal structure
prediction

[114] PLS Predicting the formation
energy of 114 structures
of binary alloy with 90%
or higher of precision

Developing a tool for
molecular structure
prediction

[116] BO Reducing the number of
searching trials required
to find the global
minimum structure by
30–40%

Discovery of new
guanidinium ILs

[117] ANN Discovering six new
guanidinium ILs
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the best, and 5000 candidate electrode materials for Na- and K-ion bat-
teries were identified. Moreover, to identify promising organic cathode
materials, Allam et al. [100] developed an ANN method to establish the
quantitative molecular structure-redox potentials relationships. Both the
electronic properties and structural information, such as the numbers of
oxygen atoms, lithium atoms, boron atoms, carbon atoms, hydrogen
atoms, and aromatic rings, are considered as input variables for ML
models. The ANN demonstrated a capability for accurately estimating the
redox potentials with a R2 of 0.9618. From the contribution analysis, the
electron affinity is the greatest contributor to the redox potential, fol-
lowed by the number of oxygen atoms, HOMO-LUMO gap, the number of
lithium atoms, LUMO, and HOMO, in order.

It is a challenge to build the link between the preparation process of
materials and the macroscopic properties of materials. In order to search
for the interdependence between electrode characteristics and
manufacturing parameters, Cunha et al. [101] used DT, SVM, and DNN
methods to predict the to predict the mass load and porosity of electrodes
using a series of slurry manufacturing parameters (active material mass
content, viscosity and solid-to-liquid ratio). The DNN method obtained
the same precision as SVM, but it could not easily analyze the influence of
manufacturing parameters on the mass load and porosity of electrodes.
As a result, several trends linking the electrode mass loading and porosity
to the slurry characteristics were disclosed by the SVMmodel. Moreover,
Eremin et al. [102] applied RR to find the structure-property relationship
of configurational space in the LiNiO2 (LNO) and LiNi0.8Co0.15Al0.05O2
(NCA) cathode materials. By applying the sequential backward selection
algorithm, it was concluded that the topology of Li layers and relative
disposition of Li ions and dopants have the most significant effect on the
energy balance.

There are highly non-linear relationships available in batteries de-
vices for which there are no simple and accurate physical models avail-
able to predict the underlying complex phenomena, such as charge-
discharge behavior and anodic oxide process. For the anode of a
rechargeable battery, ANN was deployed to predict the charge and
discharge capacity of lithium-ion batteries containing CoO anodes [103].
The best fit values corresponded to an error factor of less than 1% when
the cycles of charge and discharge were used as input factors. The result
showed that this model could predict the cycle life of a Li-ion battery with
CoO anode and could be extended to a variety of alternate anodes. Michal
et al. [104] investigated the influence of individual factors acting during
the anodic oxide process and developed an ANN model to predict the
layer thickness of anodic aluminum with reliability of 72.53% with in-
puts consists of composition of electrolyte and the individual operating
conditions.

To sum up, the combination of appropriate descriptors and proper ML
methods leads to the successful prediction. In these researches, some
Embedded FSmethods such as RF and ERT, and some correlation analysis
methods such as sequential backward selection algorithm and contribu-
tion analysis are employed to obtain the most important factors affecting
the properties, which has great significance to help materials experts to
rationally design newmaterials. The selection of MLmethods depends on
the inherent characteristics of sample data. Some linear models such as
PLS, LR are fast to model and easy to interpret. However, the relationship
between the selected descriptor and the target property of rechargeable
battery materials is complex and nonlinear in most cases. It is well
accepted that ANN is a typical nonlinear learning model which simulates
human brain procedures, but a great deal of data is always needed. In
order to find the optimal prediction ML model of the corresponding
problem, it is an effective solution strategy to use multiple ML algorithms
for modeling.

4.2. Discovery of novel rechargeable battery materials

The purpose of discovery of novel materials is to find candidate ma-
terials with superior properties that can be synthesized so that re-
searchers in the laboratory can perform targeted explorations and
443
synthetic experiments. There are two key issues for the synthesis of new
materials [105], one is that which chemical components likely form
novel materials, another is that which structures likely match the
composition and properties of novel materials. In rechargeable battery
materials, various descriptors derived from composition and structure
information can provide excellent support for the prediction of all kinds
of properties as mentioned in section 4.1. Therefore, once the composi-
tion and structure which are likely to be able to synthesize new com-
pounds are identified, it is highly possible to discover novel candidate
materials with superior properties by coupling with ML models for the
property prediction.

Hautier et al. [106] devoted to constructing a probabilistic model of
components and structures by learning the potential matching patterns of
components and structures from a large-scale data containing a large
number of materials that have been proven to be synthesized. Then the
mathematical principle of probability statistics is used to calculate the
posterior probability of the synthesis of a new compound from a specific
component combination and a specific structure. Finally, the composi-
tion and structure of candidate new compounds will be screen out
through the probability threshold. However, the number of candidate
new compounds is still a lot because of the enormous combination space
of compositions and structures, and these candidate compounds still need
to be verified by the FP calculation such as DFT, so it still takes a lot of
time even if the calculations is achievable. In Ref. [106], Hautier et al.
successfully screened 1126 candidate compounds from 2211 A-B-O sys-
tems by this method, and finally discovered 209 new ternary compounds
with a limited computational budget, but the result was verified by 5546
DFT calculations. As shown in Table 4, many studies have successfully
developed ML models only for component or structure prediction in the
case of limiting structural search space, compositional search space or
both in rechargeable batterymaterials, which are comparable to the error
bars of DFT calculation against to experiments and sometimes lower. If
these models are used to further screen the candidate compounds before
the DFT calculation, it will be to further narrow the verification space and
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accelerate the discovery of new materials.

4.2.1. Component prediction
In the discovery of novel materials, thermodynamic stability is the

essential concept which can characterize how difficulty compounds
decompose (even in infinite time) into different phases or compounds
[50], and it is one of goals in the discovery of novel materials to find
compounds with high thermodynamic stability. The formation energy
and the distance to the convex hull can quantitatively reflect the ther-
modynamic stability, and the latter is more accurate than that of the
former and more complex to calculate. In most cases, the researchers of
rechargeable battery materials realized the discovery of novel materials
by constructing the QSPR between components or structures and the
formation energy or the distance to the convex hull through ML
technique.

Most of component predictions were carried out in the case of limiting
the structural search space. For example, Li et al. [107] regarded 70
descriptors of component and structure as inputs of ML models for the
prediction of thermodynamic phase stability of perovskite oxides. ML
classification and regression models were successfully constructed based
on the dataset of DFT-calculated energies above the convex hull of 1929
perovskite oxides. After 5-fold cross-validation, the optimal classification
model is the ERT with F1 of 0.881� 0.032 compared to LR, SVN, DT and
ANN. The optimal regression model is KRR with RMSE of 28.5 � 7.5
meV/atom compared to LR, DT, ERT and ANN. Finally, the methods
accurately predicted the thermodynamic phase stability of 15 new
perovskite compounds, and summarized 11 properties of elements which
have great influence on the thermodynamic phase stability of perovskite
compounds and will be used for guiding the future synthetic experiments
of new perovskite compounds, such as number of unfilled valence or-
bitals, coefficient of thermal expansion and Mendeleev number. Elpaso-
lite (AlNaK2F6) is a kind of potential low-temperature electrolyte
materials. Faber et al. [108] generated an input vector x to represent the
component and structure information of crystals and developed a KRR
model with mean absolute error (MAE) of 0.1 eV/atom to predict for-
mation energies of 2 � 106 pristine ABC2D6 elpasolite crystals. And x is a
(n� 2-tuple) vector that encodes any stoichiometry within a given crystal
prototype. For quaternary (n ¼ 4) elpasolites, x is a (4 � 2-tuple) vector
that each x1-4 is consist of the row and column number of an element in
the periodic table for, and x1-4 is ordered by the Wyckoff sequence of the
crystal. Experimental result shows that fluoride is best suited to fit the
coordination of the D site, which lowers the formation energy whereas
the opposite is found for carbon, and 90 unique stable stoichiometries
were identified in 2 � 106 crystals. In addition, to evaluate the perfor-
mance of all kinds of ML models more rationally, Schmidt et al. [109]
performed a large scale benchmark to evaluate ML models for the pre-
diction of the thermodynamic stability of solids by incorporating DFT.
They constructed a dataset of DFT-calculated the distance to the convex
hull of around 250000 cubic perovskite systems involving 64 elements,
and the performance of RR, DT, RF, ERT and ANNs were evaluated by the
benchmark. The result showed that the ERT trained on 20000 samples is
the optimal model withMAE of 121 meV/atom on 230000 samples. They
also surprisingly found that ML models could achieve superior perfor-
mance by only using the position information of elements in the periodic
as descriptors, and revealed the impact trend of different types of ele-
ments on the stability of cubic perovskite systems.

In order to eliminate the constrain of structural search space,
compositional search space or both in the process of the discovery of
novel materials, Meredig et al. [110] developed an approach that com-
bined heuristic model based on physical mechanisms with ensembles of
DTs method in 2014. The approach was used for predicting the formation
energy of 1.6 million compositions for novel ternary compounds (AxByCz)
with R2 score of 0.9, and 8 new stable materials were verified by DFT
calculation. The approach is structure-independent, that is, only
component information is considered and no other input is required.
However, a full DFT crystal structure search is necessary to validate 4500
444
compositions that were screened out, which consumes a lot of computing
resources. And the final composition for DFT validation still need to be
selected manually in combination with domain knowledge. Ward et al.
[111] solved this problem from another perspective by extracting
structural descriptors from Voronoi tessellations in 2017. These de-
scriptors can represent different crystal structures, which can save the
time in defining different descriptors for different structures. For a
dataset of 435000 formation energies taken from OQMD, they success-
fully developed a RF model with MAE of 80 meV/atom in
cross-validation by using these structural descriptors and atomic prop-
erties. The result showed that composition-dependent descriptors of
elemental properties can provide enough information to construct a
highly accurate ML model, but the prediction result for materials with
large formation enthalpies. On the contrary, the descriptors from Voronoi
tessellations can accurately identify the materials with large formation
enthalpies, so the optimal strategy is to adopt both compositional and
structural descriptors.

To sum up, it is clearly that ANNs were often used methods in
component predictions, because ANNs can deal with more complex
problems by making full use of large amounts of data. However, the
performance of ANNs is susceptible to hyper-parameters and the scale of
dataset, and it is rather hard and time consuming to find the optimal
network configuration. In most of previous efforts, the selected ML
models were ensemble models of DTs such as RF and ERT. There are two
reasons why these models were so popular with researchers. One is that
they can deal with more complex problems than other simple models
such as RR and DT, and they can effectively avoid overfitting by inte-
grating different DTs for the same problem or adding random factors.
Another is that they need to set fewer hyper-parameters and the trained
result is not susceptible to the variation of hyper-parameter values and
the scale of dataset. Even so, the ability of ANNs to handle complex and
diverse problems cannot be ignored, so how to balance the complexity
and accuracy of ML models is an intractable issue and we will discuss in
detail in section 5.2. In addition, the previous works also prove that the
chemical and physical properties of elements or their positions in the
periodic table and other component information can provide ML models
with abundant training data, but structural descriptors still need to be
fully considered in order to more comprehensively and accurately predict
the formation energy and other properties of materials. Furthermore, it is
important to develop more general descriptors for the component search
space that can be divided into different subspace according to different
structures.

4.2.2. Structure prediction
In 2006, Ceder et al. [112] highlighted the significance of data mining

structure prediction (DMSP) combining data mining techniques and
ab-initio methods. DMSP can overcome the disadvantages of structural
search relying on limited heuristic rules based on physical mechanism in
a large search space. Firstly, ML methods such as principal component
analysis (PCA), ANNs, clustering schemes and so on are used to capture
the underlying basic physical rules governing structural stability. Then,
ab-initio methods are used to verify structures recommended by data
mining. Fischer et al. [113] carried out a test on 3975 compounds
appearing at least twice in the Pauling file database of binary metallic
alloys, and proved that DMSP is very effective in predicting the true
ground state, requiring the investigation of only five structures for a 90%
chance of finding the true structure. At present, many structure predic-
tion schemes using ML are combined with FP calculations. Furthermore,
structure prediction is similar to component prediction, which is gener-
ally carried out in case of limiting compositional search space and is
aimed at predicting the thermodynamic stability or properties of interest
of candidate materials. A number of ML models have been developed for
structure prediction, most of which have the potential to extended to any
known structure prediction of any type of material.

There are two different schemes for the structure prediction by using
ML. One is to select structures with high thermodynamic stability from a
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pool of candidate structures by learning QSPR between structures and
thermodynamic stability under the specific component space. For
example, Curtarolo et al. [114] developed a tool for crystal structure
prediction by combining dimension reduction algorithms and prediction
models. Based on a library of ab-initio energies for 114 descriptors to
represent different crystal structures in each of 55 binary metallic alloys,
the dimension of structure space was reduced to 9 from 114 by using
PCA, which can significantly shorten the DFT computation budget. They
constructed a formation energy matrix based on the result of PCA, and
used PLS to fit the formation energy of different structures. The experi-
mental result showed that this method could successfully predict the
formation energy of binary alloy with 90% or higher of precision. Gon-
calo et al. [115] developed a tool for molecular structure prediction using
counter propagation neural networks (CPGNNs). In order to identify
guanidinium salts with low mp values for ILs, they used CPGNN to
construct QSPR between the mp values of guanidinium salts of four
anionic families ðCl�;Br�; I� and BPh�4 Þ and the structural profile of
guanidinium cations. A series of 92 molecular descriptors representing
the structure of cations were used to generate input vectors for CPGNN,
including 14 constitutional descriptors related to the number of bonds
and number of specific atoms, 33 topological descriptors related to
structural flexibility and symmetry and so on. The method has been
proved to have completely acceptable predictive ability with a fivefold
cross-validation procedure yielded R2 of 0.742, and mp values of 6 new
guanidinium salts consistent with experimental values were accurately
predicted. Another scheme is to regard structure prediction as an opti-
mization problem of finding the global optimal structure with high
thermodynamic stability under a specific component space. Compared
with the former scheme that performs preliminary screening before trails
by calculating the thermodynamic stability of all candidate structures,
the optimization algorithm can directly provide several candidate
structures for trails. For example, Yamashita et al. [116] proposed a
crystal structure prediction method based on the combination of
Bayesian optimization (BO) and random search, and successfully applied
it to known systems, including NaCl and Y2Co17 systems. They exploited
the fingerprint FAB(R) of Oganov and Valle [117] to describe different
crystal structures, and used the fingerprint together with DFT-calculated
total-energies as the input of BO. In this study, BO is used to find out the
global minimum structure with a lower number of trials in large and
complex systems. Implementing this scheme, the rock salt structure of the
most stable of NaCl systems can be found in 800 structures only after 26
trails on average, and the most stable of Y2Co17 can be found in 1000
structures only after 128 trails on average. Compared with random
search, this method can reduce the average number of trails by more than
30%.

As mentioned above, each effort provides a complete workflow for
both crystal structure prediction and molecular structure prediction,
which made it possible to extend these methods to structure prediction of
rechargeable battery materials. From these works, we can conclude two
key issues that need to be considered for the structure prediction of
different types of materials. One is how to encode different structures
with different components. The available method is to represent the
combination of different components and structures as discrete space
vectors, or define descriptors to characterize and distinguish different
structures. Another issue is how machine learning can be used to assess
the thermodynamic stability of different structures or other properties of
interest. The available method is to establish ML models for QSPR or to
directly transform the structure prediction into the optimization prob-
lem. However, the structural prediction schemes mentioned above can
only predict the known structures in the pool of candidate structures, but
cannot predict unknown structures. It is still an urgent problem that how
to develop methods incorporating domain knowledge of structure design
summarized in experiments or implicit in heuristic rules for new-type
structures prediction.
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5. Challenges of machine learning in the application of
rechargeable battery materials

The rechargeable battery material informatics database based on
high-throughput calculations and experiments provides tremendous op-
portunities for ML in rechargeable battery materials. However, there still
exist issues to be resolved such as the contradiction between high
dimension and small sample, the complexity and accuracy of the ML
model, as well as the ML results and domain expert knowledge. It is these
contradictions that bring new challenges to the use of ML for recharge-
able battery materials and it will no doubt be the subject of future work.

5.1. Contradiction and coordination between high dimension and small
sample

Battery materials data are often characterized by having multiple
sources (e.g., experimental data, computational data, production data,
and literature data), being heterogeneous (e.g., structured, semi-
structured, and unstructured data), and being small samples with high
dimension (i.e., the dimension of data is much larger than the volume of
data). Therefore, researchers using ML to study rechargeable battery
materials may face conflict between the high dimension and the small
size of the data [40,77,81]. To alleviate the impact of high-dimensional,
small-size data on the predictive accuracy of models, the methods of
dimensionality reduction (e.g., FS and extraction), sample augmentation,
active learning, and ensemble learning can be employed during the ML
process. The two most popular feature extraction methods are PCA [118]
and linear discriminant analysis (LDA) [119], both of which have been
successfully applied to various practical problems in materials design and
discovery. In terms of sample augmentation, more and more published
and shared data can be downloaded and acquired from open source
websites. On the other hand, more samples can also be generated through
generative models (e.g., autoencoder [120] and generative adversarial
networks: GANs [121]). Some scholars have proposed virtual sample
generation (VSG) methods [122–127], which can systematically produce
virtual samples to fill in data gaps. Active learning is another method by
which to construct a valid training set. Its purpose is to find effective
samples by iterative sampling and to ensure that the model can obtain
high accuracy with small sample data [128]. Gubernatis et al. [44]
proposed a learning strategy based on an active learning framework to
study small sample data in material studies. The learner constructs a
certain query strategy to choose the most informative unlabeled samples
actively, which are then assigned labels by the material experts.
Sequentially, the newly labeled samples are combined with the original
samples for training, so that the model can achieve higher accuracy when
the size of a training set is small. Active learning has been successfully
applied in the study of alloys [130,131] and ceramic materials
[132–134], and thus is also expected to be applied to high-dimensional
data learning of small samples of rechargeable battery materials.
Ensemble learning accomplishes learning tasks through building and
combining multiple weak learners, which can often achieve superior
performance compared with a single learner when modeling the data
with high dimension and small size [135]. For example, the self-sampling
method proposed by Efron [136] can effectively solve not only the
problem of small size and high dimension, but also the problem of
imbalanced data by estimating the distribution of given data. Liu et al.
[137] has researched the generalization ability, efficiency, and conve-
nience of neural network ensembles and then used the proposed neural
network ensemble methods to predict successfully the magnitude and
time of earthquakes in mainland China. Therefore, the introduction of
ensemble learning into rechargeable battery materials science could offer
another effective solution to overcome the influence of the contradiction
between high dimension and small sample in ML of rechargeable battery
materials.
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5.2. Conflict and compromise between complexity and accuracy of
machine learning models

The original goal of ML is to extract interpretable knowledge from
data and emphasize the interpretability when pursuing accuracy with an
algorithm [135]. The primitive algorithms such as linear perceptron, DT,
and nearest neighbors are typical masterpieces in this respect. In order to
complete more complex learning tasks, multivariate linear and nonlinear
models have been developed for ML. These ML algorithms focused on
multivariate linear models, are mainly used to construct the linear re-
lationships between multiple factors and targeted properties. They are
simple to implement, and the learning results tend to be comprehensible.
Therefore, these models are superior for constructing simple linear re-
lationships between the structures and properties of rechargeable battery
materials [40–72]. However, there often exists a complex nonlinear
relationship between the microstructure and material properties of the
battery material. This is due to the complex electrochemical behavior
inside the rechargeable battery, which causes linear algorithms such as
OLS and PLS to fail in constructing the nonlinear relationship between
the microstructure of the battery material and its performance. Hence,
nonlinear models such as ANN and SVR are widely used to predict per-
formance of rechargeable battery materials because they can construct
complex nonlinear relationships between various factors and target
properties [85–87]. However, the researchers need to try repeatedly to
optimize the hyperparameter configuration with trial and error to obtain
optimal performance of models such as ANN and SVR, which is
time-consuming and labor-intensive. To solve this problem, some
hyperparameter optimization methods have been adopted to simplify the
complex hyperparameter tuning process of a model. For example,
Abdolhossein et al. [93] combined simulated annealing algorithm with
LSSVM to predict the density of binary mixtures, which simplified the
hyperparameter tuning process and achieved RMSE of 1.69%. However,
they often ignore the complexity of the model selection process, which is
still a challenging task in selecting suitable algorithms and models for
battery material data. Although complex learning models have great
ability to handle nonlinear relationships for rechargeable battery mate-
rials, they are less interpretable than linear models. For example,
compared with a linear regression (e.g., OLS, PLS, LWLS) method, the
learning result of a nonlinear regression model is a “black box”, which
cannot provide multiple linear regression equations. In response to these
problems, we can indirectly reduce themodel complexity by reducing the
usage complexity of the model and by improving the interpretability of
the complex model. To reduce usage complexity, automated ML (Auto
ML) attempts to reduce human intervention in model selection, optimi-
zation, and implementation using random search [138], evolutionary
optimization [139], BO [140–142], meta-learning [143] (etc.), and
builds optimal models automatically [142] for given data. Therefore,
introducing Auto ML into the rechargeable battery materials field can
make a model easy to construct and can reduce its usage complexity. For
the interpretability of a complex model, rule extraction is one way to
establish an interpretable mechanism of a “black box” ML model, the
purpose of which is to express the implied knowledge in ML with a
pattern easy to understand and to improve the interpretability of ML
methods [144]. The rule extraction methods of ML can be divided into
two types: model structure-based and model function-based [144]. The
model structure-based rule extraction regards rule extraction as a search
process, and maps the structure (e.g., network structure, weight, or
support vector) of the trained neural network/SVM to a comprehensible
if-then-else rule. The model function-based rule extraction is processed
through some specific models with interpretability, such as DT, RF, and
gradient boosting DT. The results of a tree learning model are then
converted into a comprehensible if-then-else rule, which can reproduce
the model functionally using the extracted rules (i.e., a set of rules that
can replace the original model). Therefore, introducing rule extraction
technology into battery material ML can make the ML easy to understand
in terms of both model structure and prediction results.
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5.3. Inconsistency and collaboration between learning results and domain
expert knowledge

Data driven ML methods are widely used in recent studies for the
prediction of new rechargeable battery materials properties and mate-
rials discovery. However, prior knowledge in specific domains is often
not considered in them. The results learned by an ML method will
sometimes conflict with domain expert knowledge. It is imperative to
find an approach to combine ML with domain expert knowledge in the
field of design and discovery of rechargeable battery materials. One
effective way to resolve this issue is to incorporate expertise into the
definition of problems, and then to integrate the domain knowledge of
rechargeable battery material experts, including descriptor calculation,
descriptor selection, etc. In addition, modeling by incorporating expert
knowledge and ML methods is a promising research field, for which the
typical algorithms include Bayesian network and fuzzy learning. A
Bayesian network determines the network topology by combining
training data with prior knowledge in the training process [145], while
fuzzy learning integrates expert experience using a membership function
[146]. For example, Andres and Moral [147] proposed an interactive
approach integrating domain expert knowledge to identify the edges of a
Bayesian network structure. This was to realize the active interaction
between domain experts and the Bayesian network model, ultimately, to
improve performance. Tang et al. [146] presented a fuzzy rule-based
classification system into which was incorporated expert knowledge.
Their experimental results shown that this method had significantly
reduced classification ambiguity and improved classification accuracy.
Designing new materials through both prior knowledge of rechargeable
battery material experts and knowledge databases built from learning
results is another capable approach. Martin et al. [148] proposed to
combine domain expert knowledge and learning results to build a large
knowledge database, which improved the reasoning ability of expert
systems. We also incorporated the expert knowledge into FS when
modeling materials with targeted properties [81]. Furthermore, intro-
ducing expert systems into ML in rechargeable battery materials science
is expected to resolve the contradiction between learning results and
domain expert knowledge.

While it will take some time to completely address all these chal-
lenges, ML has made progress in materials science, and data-driven
methods will undoubtedly be a major area of rechargeable battery ma-
terials science research in the future.

6. Summary and prospects

Relevant studies have shown that ML has been widely used in the
property prediction of rechargeable battery materials, especially for
electrolyte and electrode materials, as well as the discovery of new ma-
terials. With the development of ML technology and the emergence of
more novel problems in rechargeable battery material science, the scope
of application of ML will gradually expand. Simultaneously, the appli-
cation of ML in the rechargeable battery field also faces many severe
challenges. It is a thorny problem to determine how to construct a large
sample set with high quality. On the one hand, it can be solved by
establishing large databases and high-throughput platforms. On the other
hand, with the development of generative deep learning, it is possible to
use ML to generate new samples. Moreover, active learning and semi-
supervised learning are expected to help to solve this problem. In addi-
tion, because the applications of ML in the field of rechargeable battery
materials involve different disciplines, we are having to consider relevant
expert knowledge and the usability of a model in the process of model
construction. The key to wider application of ML is to determine how to
improve the traditional ML process to establish an accurate, efficient,
easy-to-use, and explicable model. Finally, the ultimate purpose of the
application of ML is to accelerate the discovery of new materials for use
in rechargeable batteries. At present, most applications are still in the
stage of establishing a property prediction model. The reverse design of



Y. Liu et al. Energy Storage Materials 31 (2020) 434–450
materials using ML allows more fully play to the initiative in the use of
ML, so it can guide the final experiments in the future, thus saving re-
sources and speeding up the discovery of new materials.
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